Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes
نویسندگان
چکیده
In chronologically aging yeast, longevity can be extended by administering a caloric restriction (CR) diet or some small molecules. These life-extending interventions target the adaptable target of rapamycin (TOR) and cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the stringent control of calorie availability. We designed a chemical genetic screen for small molecules that increase the chronological life span of yeast under CR by targeting lipid metabolism and modulating housekeeping longevity pathways that regulate longevity irrespective of the number of available calories. Our screen identifies lithocholic acid (LCA) as one of such molecules. We reveal two mechanisms underlying the life-extending effect of LCA in chronologically aging yeast. One mechanism operates in a calorie availability-independent fashion and involves the LCA-governed modulation of housekeeping longevity assurance pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways. The other mechanism extends yeast longevity under non-CR conditions and consists in LCA-driven unmasking of the previously unknown anti-aging potential of PKA. We provide evidence that LCA modulates housekeeping longevity assurance pathways by suppressing lipid-induced necrosis, attenuating mitochondrial fragmentation, altering oxidation-reduction processes in mitochondria, enhancing resistance to oxidative and thermal stresses, suppressing mitochondria-controlled apoptosis, and enhancing stability of nuclear and mitochondrial DNA.
منابع مشابه
Bile acids in the fountain of youth
lucky enough to drink water from the fountain of youth could retard its aging process, as the legend tells. Most likely, water was not the only element in the legendary fountain. What else could be found in there? We may never know! But scientists could come across their own anti-aging ingredients using model organisms and collections of chemical compounds, as the Titorenko's lab reports in thi...
متن کاملBile acids extend longevity beyond calorie restriction
discovery of potential anti-aging treatment capable of extending both our healthy aging and perhaps our longevity resuscitated an old human dream. It also brought about inordinate interest in these studies. While calorie restriction (CR) is still the best known intervention to increase life span, anti-aging molecules could mimic this effect without reducing nutrient intake. Such compounds, like...
متن کاملMacromitophagy is a longevity assurance process that in chronologically aging yeast limited in calorie supply sustains functional mitochondria and maintains cellular lipid homeostasis
Macromitophagy controls mitochondrial quality and quantity. It involves the sequestration of dysfunctional or excessive mitochondria within double-membrane autophagosomes, which then fuse with the vacuole/lysosome to deliver these mitochondria for degradation. To investigate a physiological role of macromitophagy in yeast, we examined how theatg32Δ-dependent mutational block of this process inf...
متن کاملMitochondrial membrane lipidome defines yeast longevity
Our studies revealed that lithocholic acid (LCA), a bile acid, is a potent anti-aging natural compound that in yeast cultured under longevity-extending caloric restriction (CR) conditions acts in synergy with CR to enable a significant further increase in chronological lifespan. Here, we investigate a mechanism underlying this robust longevity-extending effect of LCA under CR. We found that exo...
متن کاملDeleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response.
Enhanced stress response has been suggested to promote longevity in many species. Calorie restriction (CR) and conserved nutrient-sensing target of rapamycin (TOR) and protein kinase A (PKA) pathways have also been suggested to extend life span by increasing stress response, which protects cells from age-dependent accumulation of oxidative damages. Here we show that deleting the yeast 14-3-3 pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2010